Dimensionality and implications of reduced cognitive performance following kidney transplant

Chronic kidney disease (CKD) is an increasingly common disorder among middle-aged and older adults. More than 1,000 Canadians received kidney transplants in 1999, and there were more than three times that many on waiting lists. Deficits in memory and cognition are common in adults with chronic kidney disease and these worsen with increasing age. Cognitive abilities continue to be impaired following successful kidney transplant. However, decreased cognitive function in successful kidney transplant patients, which has vast implications on quality of life, has not been thoroughly examined. Theone Paterson is studying the everyday cognitive ability of renal transplant patients and how age, traditional and everyday measures of cognitive performance, and differing emotional states affect their quality of life and their ability to function in society on a daily basis post transplant. Specifically, Paterson’s research is looking at how these factors affect their ability to follow treatment regimens, such as taking medicines and following dietary restrictions. This work could lead to new approaches, including special training for healthcare providers in ways of supporting patients to better understand and remember aspects of treatment. Ultimately, the goal is to improve patients’ lives.

The effect of intermittent hypoxic and hypercapnic protocols on cerebral blood flow regulation at rest and exercise

Sleep apnea causes involuntary stops in breathing during sleep, up to 400 times a night. About 24 per cent of men and 9 per cent of women experience sleep apnea symptoms. People with this condition are at greater risk for stroke. Normally, we take in oxygen when we inhale and expel carbon dioxide when we exhale. During an apnea episode, breathing temporarily stops, so oxygen is not taken in and carbon dioxide accumulates. When this occurs, blood vessels in the brain expand due to an increase of carbon dioxide in the brain, which leads to an improvement in blood flow reducing the chance of brain damage from insufficient oxygen. However, this mechanism becomes less sensitive with a repeated lack of oxygen or exposure to higher than normal levels of carbon dioxide. Jordan Querido is investigating the combined effect of low oxygen and high carbon dioxide to determine which plays a greater role in decreasing the expansion of blood vessels and increasing the risk of stroke. Querido will also examine whether these repetitive exposures lessen the blood vessels’ ability to dilate during exercise, when extra oxygen is needed. An exercise program is often prescribed for sleep apnea patients, as most are overweight. This research will help to clarify whether patients are at greater risk of stroke during exercise, with the goal of designing safe exercise rehabilitation programs for sleep apnea patients.

Autism Spectrum Disorders: Identification of Novel Microdeletion and Microduplication Syndromes and Clinical Endophenotypes

Autism spectrum disorders (ASDs) affect more than one in 250 people and are characterized by significant impairments in social interactions and communication as well as inappropriately focused behaviours and restricted interests. Research involving sibling, twin and family studies has revealed the predominant role of genetic factors in ASDs and also identified regions in chromosomes where genes conveying susceptibility to ASDs might be located. Furthermore, recent studies have shown that chromosome anomalies can be found in five to 28 per cent of persons with ASDs, depending on whether they have cognitive delay and/or physical anomalies. Noemie Riendeau is exploring the genomic changes and molecular genetics underlying ASDs, as well as their clinical presentation and associated genomic syndromes. She is using a genome screening method known as Comparative Genomic Hybridization (array-CGH) to detect small chromosomal imbalances called microdeletions and microduplications in people with autism. The hope is that identifying these imbalances will help pinpoint genomic regions where genes associated with Autism Spectrum Disorders (ASDs) are located. The research also investigates how these genomic changes correlate with the clinical phenotypes of the patients, especially those with dysmorphic features and/or intellectual disability, but also for those cases described as simple autism. By defining new microdeletion and microduplication syndromes, this research will contribute to a better understanding of the genetic basis of ASDs and potentially to improved methods for early detection and treatment.

Who works in rural areas?: Experiences and characteristics shared by long term health care professionals working in rural areas of Northern British Columbia

The recruitment and retention of health care professionals is one of the most pressing challenges facing the Canadian health care system today. BC is competing with the rest of the world to recruit and retain physiotherapists, pharmacists, X-ray technicians, socials workers and other health care professionals. This challenge is even more prevalent for rural and northern BC communities seeking talented professionals. Candice Roberge is researching the experiences and personal characteristics shared by health care professionals who successfully make a career of working in rural, northern BC communities. Her study will provide insight into the kind of people that need to be trained to meet the health care needs of rural BC. With her findings she hopes to assist health authorities target their recruitment strategies towards health professionals who will thrive on the lifestyle and the unique rewards of providing health services in small-town BC. In addition, her research strives to improve health care services and accessibility to services for individuals living in rural BC.

Identification of Enterohaemorrhagic Escherichia coli (EHEC) effector protein binding partners in host intestinal epithelial cells

Certain strains of Escherichia coli (E. coli) bacteria can be harmful and cause disease; other strains are harmless and live harmoniously with their host. In fact, harmless strains of E. coli colonize the human intestine shortly after birth and survive there. In contrast, the disease-causing strains produce a wide variety of infections, including meningitis, urinary tract infections and intestinal infections. Enterohaemorrhagic E. coli (EHEC) colonizes the small intestine and induces severe bloody diarrhea. It is a significant cause of illness and death worldwide. EHEC attaches to the surface of cells lining the intestinal walls. These epithelial cells have microvilli, which are small finger-like projections that increase the surface area available to absorb water and nutrients. EHEC causes flattening of microvilli, which enables the bacteria to bind tightly to the intestinal cells and inject effector proteins into the interior of the host cell where they disrupt normal host cell processes and cause disease. Seven novel EHEC effector proteins have been identified and the mechanisms of their function are unknown. In her research, Stephanie Shames is working to identify host proteins in epithelial cells that are targeted by the seven novel EHEC effector proteins and to describe the interaction that occurs between these host and bacterial proteins. This research may provide important insights into how EHEC causes diarrhea which, in turn, could lead to the development of better methods of treatment and prevention, with world-wide benefits.

Exploring emotional awareness using real-time fMRI

Depression is a devastating disorder affecting approximately 1.4 million Canadians and 121 million people worldwide. While there have been many advances in depression treatment, a high rate of depression relapse remains. Numerous studies have shown that depression is associated with rumination, the tendency to dwell on thoughts and emotions. Since the majority of these thoughts and emotions are negative, rumination leads to a lower mood state. Rumination involves the difficulty of regulating emotional awareness as individuals become excessively aware of their negative emotions. A better understanding of the process of regulating emotional awareness in healthy individuals is therefore needed to address this problem in individuals suffering from depression. Rachelle Smith is exploring the regulation of emotional awareness in healthy individuals by making use of real-time functional magnetic resonance imaging (fMRI). This novel method, which has been successfully used in research on regulation of pain and sadness, enables participants to receive immediate feedback regarding the level of activation in a selected brain region as they engage in emotional awareness and perceptual awareness. Smith hopes her research will not only lead to an increased understanding of the regulation of emotional awareness in healthy individuals, but more importantly, provide a necessary framework for future studies in individuals suffering from depression. Ultimately, it could lead to new treatments for depression that allow individuals to gain increased control of their emotional awareness.

The role of CD34 in muscle regeneration

Exercise damages muscle, which the body subsequently repairs. In the repair process, satellite cells (also called muscle stem cells) that are normally at rest, get switched on to replicate, and fuse to, existing muscle fibers. As few as seven satellite cells can generate over 100 new muscle fibers to replace damaged tissue. Consequently, these cells are ideal candidates for treating severe muscle degenerative diseases such as Duchenne muscular dystrophy (the most common form of MD), which cause rapidly progressive muscle weakness and atrophy, and is eventually fatal. Leslie So is assessing the role of a protein called CD34 in muscle regeneration. A short form of CD34 is present on resting satellite cells. Once the cells are activated and recruited for muscle repair, a longer form of CD34 quickly replaces the short form. During the last steps in muscle regeneration, CD34 is no longer present. Leslie is investigating whether the protein maintains satellite cells in their resting state, or helps these cells switch on. To date, efforts to grow and inject satellite cells to treat damaged muscle have been disappointing. In previous work, she developed methods to isolate satellite cells, and therefore hopes that further research will enable scientists to grow cells able to repair damaged muscles, providing a new treatment, and possibly a cure, for muscle degenerative diseases.

Nonverbal Emotion Processing Across Communication Channels

Nonverbal communication – facial expressions, gestures, posture, and intonation (tone of voice) – offers a rich source of information about a speaker’s intentions and moods. Recognizing and correctly interpreting these cues is important for social competence, but is challenging for people with autism and other developmental disorders that have deficits in nonverbal communication. Intonation and facial expressions represent the most prominent and biologically important nonverbal communication channels. These channels typically overlap in terms of the information they convey. While few studies have looked at the shared and unique brain mechanisms involved in these communication systems, some behavioural research suggests shared underlying mechanisms. Using magnetoencephalography, an imaging technique used to detect electro-magnetic and metabolic shifts occurring in the brain, Valery Sramko is studying both typically developing adults and those with autism spectrum disorder. Sramko is examining the mechanisms and brain areas shared by intonation and facial expression, which are deficient in people with autism, to shed light on nonverbal emotion processing. Her overall aim is to gain a better understanding of the processes and mechanisms involved in nonverbal communication, which could contribute to the development of potential interventions for people with autism and other developmental disorders.

Dopamine and Risky-Decision Making

Parkinson’s disease is a neurodegenerative disorder that arises when a substantial number of dopamine-producing neurons deteriorate. The loss of these cells results in a number of brain regions receiving less than the normal amount of dopamine (DA). In addition to the motor symptoms of the disease, many patients with Parkinson’s disease exhibit difficulties with cognitive tasks. Patients can take a variety of drug therapies that increase DA brain levels or directly stimulate DA receptors in order to alleviate motor and cognitive symptoms. However, recent studies have shown that a number of patients with Parkinson’s disease have developed pathological gambling, which appears to be related to the DA agonist drug therapy they are taking. The gambling symptoms appear after the induction of (or increase in) the dose the DA agonist medication and disappear when the medication is decreased or halted. Jennifer St. Onge is researching the link between pathological gambling and increased DA activity in the brain by studying how risk-based decision making is altered by manipulations of DA transmission using experimental animals. Her research will help clarify whether pathological gambling and risk taking behaviour observed in some patients with Parkinson’s disease is the result of DA agonist drug therapy. This study may facilitate closer monitoring of drug doses and the development of novel drugs that could treat motor symptoms of the disease without altering decision making.

Dynamic suppression of pathological brain oscillations in Parkinson's disease (PD) with virtual environments (VE)

Parkinson’s disease is a debilitating condition that affects millions of people worldwide, and is the second most prevalent neurodegenerative disorder in Canada. Typical symptoms include tremor, slowness of movement, difficulty in walking, and rigidity. Drug treatments and surgery are available to improve symptoms, but these forms of therapy are not always effective and can have serious side effects. As these options aren’t appropriate for all Parkinson’s patients, alternative, non-invasive treatments are needed. Parkinson’s symptoms are caused by a lack of the chemical messenger dopamine. Dopamine is normally released by neurons in the substantia nigra, allowing communication with the basal ganglia, an area of the brain that is responsible for the planning and smooth execution of movement. The lack of dopamine is believed to result in abnormal rhythms in the motor control areas of the brain, impeding movement. Recent studies have shown that appropriate stimuli can suppress the abnormal brain rhythms responsible for blocking movement in people with Parkinson’s and help improve the way people with the disease move and walk. Giorgia Tropini is researching the association between visual stimuli and ongoing brain rhythms. Using virtual environment technology and electroencephalogram (EEG) measurements, Giorgia is developing specific, precisely timed visual images to disrupt inappropriate brain rhythms. Ultimately, she aims to contribute to the development of a wearable, non-surgical, non-pharmacological device to treat Parkinson’s symptoms. Findings from her research could also be applied to other diseases that involve abnormal brain rhythms, such as epilepsy and depression.