Quantifying navigational impairments in preclinical Alzheimer’s disease

Our brain contains a ‘cognitive map’ of the external world that helps us navigate, and encode/retrieve memories. Dementias such as Alzheimer’s Disease (AD) degenerate these regions, causing well-known memory impairments and much less well-understood navigational impairments. My research program seeks to quantify how navigation is impacted in early AD in rodents and humans.

Young and older human participants will navigate a virtual reality maze. We will quantify how their errors in positioning and navigating scale when the complexity of the task is increased. We will perform similar experiments in rats navigating a physical maze, where we can additionally record neural activity. We will then extend the task to participants diagnosed with preclinical AD, and rodent models of AD. We will characterize the behavioural and neural correlates of early progression of AD, with the goal of finding a metric that is predictive of AD-induced cognitive impairment, and its underlying neural mechanisms.

Over 60,000 British Columbians currently live with dementia. A non-invasive and affordable test such as this will allow clinicians to perform early diagnosis, and start approaches that reduce symptoms and improve quality of life.