Fibrinogen promotes a microglial-mediated inflammatory response following adolescent repetitive mild traumatic brain injury

Concussions are a major health issue in Canada. Adolescents are an at-risk population for concussions because they are in an age range that is often engaged in contact sports and high-risk activities. Microglia, the brain’s resident immune cells, respond to these injuries, causing an inflammatory response. Concussions can damage brain blood vessels, promoting the release of fibrinogen, a protein not present in the healthy brain. Fibrinogen interacts with microglia, promoting an inflammatory profile that can alter neuronal functioning, leading to behavioural deficits. This project will block fibrinogen’s interaction with microglia using an ecologically valid rodent model of concussion. We will assess short- and long-term memory with well-known behavioural tests. In addition, we will assess microglial activation and type using immunohistochemistry, and assessing neuronal connectivity using field electrophysiology. Adolescence is a period of significant development marked by rapid learning and substantial brain growth/maturation. As such, expanding and fully characterizing changes in brain circuitry mediated by fibrinogen/microglia interactions following concussion may provide avenues for preventative and therapeutic interventions.