Pediatric obsessive-compulsive disorder (OCD) is a neuropsychiatric illness that has a 1-4 percent prevalence rate in children and youth. OCD is characterized by intrusive thoughts and repetitive behaviours, and although treatments, such as cognitive behavioural therapy (CBT), are available, better treatment selection could improve response rates.
To advance our understanding of the dysfunctional brain mechanisms underlying OCD, and eventually find predictive biomarkers of treatment response, functional magnetic resonance imaging (fMRI) has been used to find the neural correlates of OCD, particularly during symptom provocation tasks (i.e. tasks that allow researchers to probe the brain areas involved in emotional processing by exposing OCD patients to OCD-related stimuli). This research has given us neural correlates of OCD, but fMRI is expensive to implement in clinics.
The goal of this proposal is to use electroencephalography (EEG) to study OCD symptom provocation because it is less costly than fMRI and easily implemented in clinics. EEG also provides an innovative way to investigate OCD, as it provides a fine-grained temporal measure of brain activity, whereas fMRI provides a fine-grained spatial measure of brain activity. Thus, EEG could provide a new set of temporal psychophysiological correlates of OCD that would be easily and inexpensively collected in clinics, and that could predict CBT outcome. In the proposed study, clinically diagnosed pediatric OCD patients (12-18 years old), siblings unaffected by OCD (12-18 years), and matched healthy controls (HCs) will complete an OCD symptom provocation task that elicits emotional responses while EEG is recorded. Event-related potentials (ERPs) will then be derived from the EEG data and will be used to characterize the OCD group in comparison to the sibling and HC group, and to use as potential predictors of CBT response.
The proposed study is novel because few EEG studies of OCD symptom provocation exist, and no emotional-related ERP studies have been conducted in children, although pediatric studies are essential to our understanding of early brain differences.
Our findings will be presented to clinicians and researchers at annual conferences and published in leading peer-reviewed journals. Lay-friendly articles will also be written and submitted to the Canadian OCD Network’s and the International OCD Foundation’s newsletters.
The neighbourhood environment has been found to affect the levels of physical activity among children. We are investigating the mediating effect of parenting practices on this relationship.
For example, some studies have found that children living in neighbourhoods that are more walkable or have more green space were more likely to be physically active. This may be related to parenting practices. For example, parents may restrict their children from playing outdoors if they feel that their neighbourhood is unsafe but may encourage outdoor play if they live near a park.
This study will address this gap by using survey data collected from two sample populations. First, data collected from a web-based survey of 500 parents across Canada and the USA will be used to describe the relationship between the neighbourhood environment (e.g. safety, crime, walkability) and physical activity parenting practices.
Second, one child from each of 88 living in Metro Vancouver will be provided with an accelerometer to record their physical activity patterns. Their parents will complete a questionnaire measuring their perception of the environment and the parenting practices they employ.
The goal of the project is to better understand how the environment can influence parenting practices, enabling recommendations on designing neighbourhoods to allow children to be more physically active.
Vaccination has been proven to be an effective tool to combat the spread of many communicable diseases. However, recent outbreaks of vaccine-preventable diseases such as measles have heightened concern regarding parents who are vaccine hesitant (i.e. who exhibit delayed acceptance or refusal of some or all vaccines).
Understanding what types of information most influence parents is key to producing effective public health messages that will improve vaccination rates.
Working in collaboration with the Canadian Immunization Research Network (CIRN), this project will examine the relationships among health information, social context, and parental decision-making around routine early childhood vaccinations.
To understand how information interventions interact with social context to influence parental decisions about routine childhood vaccinations, we will conduct:
- critical discourse analysis of vaccine discussions on social media
- a study of vaccine-hesitant new parents, following their information use and vaccination decisions over the course of a year
- a population survey module on health information seeking and use
This work will complement studies by CIRN and contribute to CIRN recommendations for Canadian immunization policy and practice.
Screening and development of molecules targeting presynaptic SNARE protein-protein interactions as novel pharmacological strategy in schizophrenia and other mental illnesses Schizophrenia is one of the major disabling mental disorders with a worldwide prevalence of about one percent. Although the cause of schizophrenia remains unclear, converging data indicate that dysfunctions altering neurotransmitter levels in the synaptic cleft, the tiny space between nerve cells in which nerve impulses are conducted, might be at the core of this disorder. In presynaptic cells, neurotransmitter release is governed by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor). Findings in the schizophrenic postmortem brain have revealed increased SNARE protein-protein interactions, which may explain the unbalanced neurotransmitter levels in schizophrenia, and reduced SNARE complexes in antipsychotic-treated patients. In accordance, genetic differences in SNARE-coding genes have been associated with schizophrenia.
Despite the growing evidence involving presynaptic dysfunction in mental illnesses, no attempts have been made to develop a pharmacological approach targeting the SNARE complex. Furthermore, the sole active agent against SNARE proteins, Botox cannot be used due to its irreversible, and lethal effects, presenting a challenge to finding SNARE-interfering compounds and pharmaceutically treating schizophrenia.
Against this background, the objective of Dr. Ramos-Miguel’s clinical research project is to find SNARE-interfering compounds, and further address their potential benefits in the pharmacological management of schizophrenia.
To meet this goal, an agreement involving UBC, the Centre for Drug Research and Development (CDRD), and Roche-Canada, will allow Dr. Ramos-Miguel’s team to screen the company’s largest library, containing more than one million compounds. Additionally, an immunoassay-derived method has been automated for high throughput screening of compounds modifying SNARE interactions. This assay successfully screened the CDRD 26,000-compound library, and identified at least two SNARE “inhibitors”. Further hits from the screening project will be subjected to a number of preclinical tests, including immunological, electrophysiological, toxicological and behavioral assays.
Identification of SNARE-interfering substances may have potential to improve pharmacological treatment of schizophrenia through a completely novel strategy.
Prescriptions of second-generation antipsychotic (SGA) medication for children in British Columbia increased 22-fold from 1996 to 2010. These medications treat the underlying mental health issues (e.g. psychosis, depression, attention deficit/hyperactivity disorder) but often come with side-effects, including metabolic syndrome.
Metabolic syndrome is a cluster of clinical features that includes excess weight around the middle, high blood pressure, and high blood sugar or triglyceride concentrations. Given that metabolic syndrome is a risk factor for cardiovascular disease, there are serious implications for the long-term health of these children. Development of a secondary chronic disease such as CVD, on top of an existing mental health condition, further marginalizes the life-long health of these children.
Accordingly, there is a need to develop a means by which to distinguish children at risk for developing metabolic syndrome from those who are not. The goal of this research is to identify genetic markers that will indicate which children will develop risk factors for heart disease and stroke when treated with SGAs so that appropriate prevention strategies may be implemented in these children.
Millions of newborns and infants die each year from infectious diseases. Many of these deaths are preventable, and analysis of the immune development of children can help define paths for medical intervention that may save lives.
Dr. Tobias Kollmann’s research team is conducting the first global comparison of immune development in cohorts of children from different countries. This project will compare the immune development of children born in Vancouver to those born in South Africa, Mozambique, Ecuador and Belgium. Preliminary research has found striking qualitative and quantitative differences in children’s immune development that appear to be directly related to their genetic make-up as well as the particular environment to which they are exposed. Kollmann’s team is dissecting the cause-effect relationship for the role of host genetics and studying the environmental factors that direct the developmental path of the innate and adaptive immune responses. Analysis of these genetic and environmental factors will potentially reveal pathways that direct future efforts to treat and prevent infectious diseases.
Kollmann’s team is already developing a platform that will help deliver targeted vaccinations to protect newborns. Using genetically altered strains of Listeria monocytogenes, the vaccine will induce a desired immune response only in specific cells and then disappear without harming the child. Preliminary data suggest this goal is within reach, and Kollmann’s team is working in partnership with industry to design and test a Listeria-based vaccination for newborns. Through this work, safe yet effective methods will be identified to prevent millions of newborn and infant deaths due to infectious diseases.
Dr. Laura Sly’s research program aims to improve our understanding of inflammatory bowel disease pathology and to identify and validate novel therapeutic approaches that will improve patient care. Her team has been investigating the role of SH2-containing Inositol Phosphatase (SHIP) in intestinal inflammation. SHIP is a protein that regulates enzymes involved in immune cell signaling. Sly’s research has shown that SHIP-deficient macrophages are hyper-responsive to IL-4, which drives them to an alternatively activated or M2 phenotype.
Using mice as a genetic model of M2 macrophages, Sly reported that M2 macrophages are protective against induced intestinal inflammation. Since then, her team has characterized a complimentary genetic model of M1-polarized macrophages and has identified key anti-inflammatory mediators that may be responsible for protection. Future investigations will focus on whether adoptive transfer of polarized macrophages or targeting macrophage polarization in situ can reduce intestinal inflammation in pre-clinical models of inflammatory bowel diseases.
Sly’s team has also developed a new mouse model of intestinal inflammation that shares key pathological features with Crohn’s disease. They have reported that SHIP-deficient mice develop spontaneous, discontinuous ileal inflammation accompanied by excessive collagen deposition and muscle thickening. Current research goals include targeting macrophage polarization or polarized macrophage products to reduce intestinal inflammation in pre-clinical models of inflammatory bowel disease, and identifying cell types and biochemical mechanisms that contribute to intestinal inflammation in SHIP-deficient mice. Together, these studies will identify cellular and biochemical targets and investigate new immunotherapeutic approaches that may useful in reducing intestinal inflammation in people with inflammatory bowel diseases.
To date, the only successful approach for curing type 1 diabetes is to replace the insulin-producing beta cells that have been destroyed by the disease. Pancreas- and islet-cell transplantation are promising therapeutic strategies; however, scarcity of transplantable tissue has limited their widespread use. One way to produce enough beta cells to cure type 1 diabetes is to determine how the cells develop normally within the embryo and apply this knowledge to the regeneration of beta cells in the culture dish or directly in people with diabetes.
Using human and mouse model systems, Dr. Francis Lynn’s research aims to enhance our understanding of normal regulatory pathways that govern pancreas- and insulin-producing pancreatic beta cell genesis and function. The hope is that a greater understanding will enable cell-based approaches for treating and curing diabetes. Lynn’s long-term objective is to understand how regulatory DNA-binding proteins called transcription factors drive beta cell formation and function. This research specifically focuses on one member of the Sox gene family of transcription factors named Sox4. Preliminary data suggest that Sox4 is instrumental in governing both the birth of beta cells and their replication later in life. These observations place Sox4 as a novel and previously unappreciated key regulator of beta cell biology.
Lynn hopes that a thorough characterization of the pathways through which Sox4 regulates beta cell formation and function will inform novel approaches for generation of large numbers of functional beta cells from human embryonic stem cells or induced pluripotent stem cells.
During pregnancy, approximately 15 per cent of women experience depression requiring medical intervention. Although these conditions are often treated with Serotonin Reuptake Inhibitor (SRI) antidepressants, these drugs are reported to increase the risks of adverse infant outcomes, including preterm birth, small for gestational age (SGA) birth, respiratory distress, and some congenital heart malformations. Infant outcomes are also influenced by other factors, including socioeconomic status, and research has shown that mothers of lower socioeconomic status are at increased risk of preterm birth, SGA birth, stillbirth, and neonatal and infant death. To complicate things further, data shows that mothers of low socioeconomic status are significantly more likely to experience depression during pregnancy and are significantly more likely to use one or more psychotropic medications (including antidepressants) to manage mental illness during pregnancy than women of higher income. The relationships between prenatal depression, socioeconomic status, use of antidepressants, and infant outcomes are complex and poorly understood.
Dr. Gillian Hanley will systematically address questions about the role socioeconomic status plays in maternal depression, antidepressant use, and infant developmental outcomes during the first year of life. She has hypothesized that maternal socioeconomic status accounts for an increased risk of adverse infant outcomes previously attributed to antidepressant exposure during pregnancy. For this study, Dr. Hanley will link a number of BC population-level administrative datasets to build the most comprehensive source of data on pregnant women of its kind in the world. This dataset will include all pregnancies and births in British Columbia between 2002 and 2009 (approximately 300,000 infants) and will provide sufficient sample size to detect differences in rare outcomes, such as congenital anomalies and neonatal/infant death. In this project, socioeconomic status will be studied as a predictor of antenatal maternal depression, antidepressant use, and infant developmental health.
These results will illuminate complex relationships between prenatal depression, antidepressant use, and infant outcomes. Given that it is ethically and medically unadvisable to undertake a randomized trial of prenatal antidepressant exposure, this population-based study will provide an unprecedented opportunity to examine key influences on infant health. Dr. Hanley's findings should help clinicians and mothers make more informed treatment decisions for their health and that of their infants.