Topographical disorientation as a predictor of Alzheimer's Disease in patients affected by Mild Cognitive Impairment

While mild cognitive impairment (MCI) is common among elderly individuals, most continue to function moderately well in carrying out their usual activities. However, over the following three years after diagnoses of MCI, about 30 per cent of patients develop Alzheimer disease — a neurodegenerative disorder that seriously impairs thinking and memory. Some studies suggest that analyzing cerebrospinal fluid or brain imaging may predict the risk of Alzheimer dementia in patients with MCI, but these techniques are costly and, in some cases, not routinely available. The earliest degeneration of brain tissue with Alzheimer disease occurs in the hippocampus, a region of the brain important for learning, memory and topographical orientation, that is our ability to orient within the environment Dr. Giuseppe Iaria is investigating whether a computerized virtual reality test assessing topographical orientation skills is able to predict the progression of Alzheimer’s disease in patients diagnosed with MCI. If effective, this inexpensive test could be administered in any clinic to identify MCI patients at high risk for developing Alzheimer dementia. With early detection, it may be possible for medication to prevent or slow the progression of nerve cell degeneration because once the damage has occurred, it is generally irreversible.

MeCP2 and chromatin: An alternative to the global binding hypothesis

Rett syndrome is a severe neurodevelopmental disease that affects approximately one in 10,000 girls. Progressive symptoms begin at a very young age and worsen through childhood. These include loss of speech, purposeful hand use, ability to walk, and the development of seizures. In 85 per cent of cases, the cause of Rett syndrome has been traced to mutations of a protein known as MeCP2. Dr. Toyotaka Ishibashi is studying the relationship at the cell level among the MeCP2 protein, DNA and chromatin (a complex of DNA and protein that regulates the binding of the MeCP2 protein to DNA). Despite some research carried out in recent years, details of the interaction of MeCP2 with chromatin remain largely unknown. Toyotaka is investigating how MeCP2 works in normal cells, which is critical for later study of how gene mutations interfere with the normal function of the protein to cause the symptoms of Rett syndrome. Ultimately, Toyotaka hopes to clarify the role of the MeCP2’s nucleosome — the most elementary structure involved in regulating the protein’s activity — to provide potential cellular targets for drug targeting and new prospects for the development of clinical therapies.

Role of ABCA1 in brain cholesterol metabolism and brain function

Although the brain accounts for only 2 per cent of total body weight, it contains almost 25 per cent of total body cholesterol. This cholesterol is critical to healthy functioning in the brain, and plays an important role in learning. Abnormalities in the synthesis of brain cholesterol are associated with several devastating diseases, including Alzheimer’s and Huntington’s. However, not much is known about how the central nervous system regulates the metabolism and movement of cholesterol in the brain. Two-thirds of brain cholesterol is located in myelin, an insulating layer that surrounds the nerve fibers of brain cells where it supports transmission of signals between neurons across connections called synapses. Cholesterol also helps repair neurons. Although the synthesis of cholesterol occurs at a high level in the developing brain, it declines significantly in the adult brain. Consequently, the brain must rely on efficient transport and recycling to meet its need for cholesterol in the brain cells. Dr. Joanna Karasinska is investigating whether ABCA1, a major cholesterol transporter in the brain, controls the metabolism of cholesterol and how this affects brain function. This knowledge could lead to new therapies for neurological disorders associated with a cholesterol imbalance in the brain, and for the repair of neurons following a brain injury.

Development of potential therapeutics for influenza via sialidase inactivators

Influenza is a severe infection of the upper respiratory tract that occurs each year, affecting approximately 20 per cent of the world’s population. Although vaccination is the primary prevention strategy, a number of scenarios exist for which vaccination is insufficient and for which the development of new antiviral agents would be extremely important. Two classes of drugs are available for controlling the spread of influenza. Amatidines work by blocking the ion channel function of the viral M2 protein. However, these drugs are only effective against influenza A virus and have substantial side effects. The other class of therapeutics, sialidase inhibitors, includes enzyme inhibitors Relenza and Tamiflu. However, influenza viruses are developing resistance to both inhibitors. One solution to the problem of viruses becoming resistant is to use several drugs at once (a drug cocktail), making it more difficult for the virus to develop resistance to all of them. Another solution, which could be used in concert, is to design new inhibitors that are less likely to induce viruses to mutate and develop resistance. This is the goal of Dr. Jin Hyo Kim’s research.

Development and evaluation of a novel group educational intervention to promote partner support for people with rheumatoid arthritis

In addition to the many physical challenges that arise from rheumatoid arthritis (RA), related problems with pain, fatigue, sleep and depression can affect quality of family relationships, work and hobbies. Although current drug treatments for RA can improve symptoms in some people, there is still a great need for other types of help to make peoples’ lives better. Research has shown that good social support from family can result in better wellbeing, pain reduction and improved quality of life. With other types of arthritis, education programs have resulted in better coping among arthritis sufferers and their partners. However, there is no similar program specifically for people with RA. Dr. Allen Lehman’s study is the first to create and test a program to improve social support for people with RA and their partners. He will develop the program by conducting consultations with people with RA, their partners and couples together. Groups will discuss challenges and successes in getting support, what kinds of support work and what is not helpful. The program will then be piloted with 30 couples. This study aims help couples better understand the disease and learn more about what one can and cannot do to be supportive. Because social support predicts good health, the program could also be applied to people with other types of arthritis and chronic disease.

Biomechanical energy harvesting

Electronic medical devices such as vital sign monitors, pacemakers and motorized prostheses are relied upon by people with disabilities, the elderly and others. However, all of these mobile devices are powered by batteries, which have limited energy storage, and add additional weight to the devices. Although substantial progress has been made in enhancing battery capacity, power requirements for the mobile devices are increasing faster than the improvements made in battery performance. Human power is an attractive energy source because of the ability for humans to convert food into mechanical power and the high mechanical power outputs attainable by humans. Human power is portable, environmentally friendly, and readily available for power-consuming applications that involve direct human use, such as prostheses. Qingguo Li is part of an SFU research team who has developed a biomechanical energy harvester (BEH) that converts mechanical energy extracted from human movement into electrical energy. Resembling a leg brace, the BEH works by acquiring the mechanical power produced by muscles at the knee joint when the user is walking. The technology is similar to regenerative braking in hybrid gas-electric automobiles; instead of dispersing mechanical energy as heat using conventional brakes, the energy is converted into electrical energy. Li’s goal is to develop a family of energy harvesting devices that can be worn on the body, inserted into motorized prostheses or permanently implanted within the body.

Structural basis of the glycerol-phosphate and the ribitol-phosphate chain polymerization in teichoic acid biosynthesis in rram-positive bacteria

One way of classifying bacteria is by their colour after applying a chemical stain (called the Gram stain). Some bacteria stain blue (Gram-positive), while others stain pink (Gram-negative). Gram-positive and Gram-negative bacteria produce different kinds of infections. Worldwide, more than half of infections treated in hospital involve Gram-positive bacteria. These include Staph infections caused by Gram-positive Staphylococcus aureus bacteria, as well as Strep throat and toxic shock syndrome caused by Streptococcus bacteria. Many Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), are becoming resistant to antibiotics. The cell wall of all Gram-positive bacteria contains about 50 percent of teichoic acids, a diverse group of polymers (long-chain molecules). Dr. Leo Lin is investigating whether two common teichoic acids help these bacteria adhere to host cells in humans or even to the synthetic coatings of transplanted medical devices, such as pacemakers. For many bacteria, the ability to attach to the surface of a host cell is an essential first step in the infection process. Dr. Lin will determine the three-dimensional structure of the enzymes that synthesize these teichoic acid polymers using x-ray crystallography, a technique that can deduce the atomic structure of molecules. A lack of teichoic acid significantly destabilizes the bacterial cell wall. Dr. Lin is looking for ways in which this information can be used to develop ways of interfering with the ability of bacteria to attach to host cell surfaces as a first line of defense in protecting against the establishment of bacterial infections.

Molecular mechanisms of retrograde transport

A single human cell is made up of many small organelles (compartments). Through a process known as vesicle transport, proteins and lipids move from one compartment to another to support and maintain cell function. Motor nerve cell diseases are progressive disorders involving the nerve cells responsible for carrying impulses that instruct the muscles in the upper and lower body to move. Abnormal vesicle transport causes a family of these devastating diseases, including Lou Gehrig’s disease (Amyotrophic Lateral Sclerosis or ALS). Abnormal vesicle transport has also been found in Alzheimer’s, Down syndrome, and Neimann-Pick C disease, suggesting that these abnormalities also play a role in the development of these diseases. To better understand these diseases and hopefully lead to improved treatments, Dr. Benjamen Montpetit is focusing his research on determining how vesicle transport works. Montpetit, who received MSFHR trainee awards in 2002 and 2006 in support of his PhD research, is studying the process in yeast with the aid of robotic-based systems. Yeast makes an excellent model for his research because the yeast genome has been fully sequenced and, therefore, its genetic code is known.

Interomics: System-wide proteomic discovery of interactors and substrates of proteases

A protease is an enzyme that can split a protein into peptides. Alterations in normal protease expression are known to be involved in the development of cancer, arthritis and various lung, neurological and cardiovascular diseases. As a result, many proteases and their substrates are an important focus of attention as potential drug targets. Among proteases, matrix metalloproteases (MMPs) are responsible for the proteolytic modification of the extracellular matrix, a complex network of polysaccharides and proteins secreted by cells that serves as a structural element in tissues and also influences their development and physiology. While more is being learned about the multiple functions of MMPs –, many of which are beneficial – their roles and biological functions are not fully understood. David Rodriguez’s research seeks to unravel the complex web of connections among MMPs, their natural substrates, inhibitors and other proteases. He is using a technique known as Mass Spectrometry to detect and identify hundreds, even thousands, of proteins in a sample. By identifying and describing the complex set of signaling pathways in which MMPs are involved, Rodriguez is hoping to better understand the role of these proteases and to predict the consequences when they function abnormally. Such knowledge is critical for designing more effective drugs to treat diseases which result from abnormal protease function.

Regulation of lymphocyte activation and proliferation and synthesis of pro-inflammatory cytokines by the Caprin-1/G3BP-1 heteromeric complex

To fend off infections, our immune system has evolved effective strategies. These include rapidly increasing the number of infection fighting immune cells, including cytokines that promote an inflammatory response to destroy harmful bacteria, viruses and other infectious agents. The key to the effectiveness of this strategy is striking a balance between creating an inflammatory response sufficient to destroy the infectious agents without causing severe damage to the surrounding tissues. In some cases, poorly controlled or misdirected immune responses cause long term damage and disease, including arthritis and asthma. Samuel Solomon is studying how the body regulates the immune response, in particular the role of RNA binding proteins such as Caprin-1 and G3BP-1 in the process. Caprin-1 and G3BP-1 are thought to be key players in the signaling process, which controls the action of inflammatory cytokines. Solomon is studying how they affect the production of cytokines and what are the effects when these proteins are absent or functioning abnormally. This research will contribute to our understanding of immune function, which could lead to the design of novel, better and more effective cures for infections and auto-immune diseases.