Seizures are more common during an infant’s first month than at any other time during their development. They are caused by temporary abnormal electrical activity in the brain and can have long-lasting consequences such as memory impairments and an increased risk for epilepsy. Unfortunately, anticonvulsant treatments are ineffective for at least 35% of babies who have seizures as newborns. Currently, the mechanisms underlying the onset of these seizures are unclear. While research indicates that increased transmission of glutamate (a neurotransmitter) may result in seizures in the adult brain, there have been indications that seizures in newborns may be triggered by a reduction in glutamate transmission. These and other findings suggest that certain glutamate receptors may have different roles in causing seizures over the course of neurological development. Dr. John Howland is investigating the role of glutamatergic transmission levels and seizures during the neonatal period. He is analyzing two highly specific glutamate receptor antagonists (blockers) to determine the specific receptor subtypes involved in triggering seizures. Results from his research may have significant implications for the understanding of neonatal seizures and the development of novel drug targets for their prevention and treatment.