More than 80 percent of patients with cancer encounter a severe loss of muscle and fat leading to a devastating condition called cachexia, a condition that severely affects the quality of life. Incidence of cachexia is higher in males than in females. In general, and in cancer, men have increased muscle mass while women have higher fat mass. Understanding the inherent sex-differences in disease will aid in developing effective treatment options. During muscle injury, different types of cells in muscle act in synchrony for its repair. One type of supporting cell is called as fibroadipogenic progenitors (FAPs), which provide the required growth factors for muscle regeneration. Impairment in FAPs production or function would lead to unhealthy accumulation of fat in muscle, leading to muscle wasting. The role of molecules such as microRNAs (miRNAs) contributing to this impairment remains unknown in cachexia. miRNAs are small molecules that controls expression of several genes. The current proposal aims to understand the role of sex-specific dysregulated miRNAs in FAPs and if therapeutically targeting the defective miRNAs may ameliorate muscle wasting thereby improving survival, quality of life in patients with cachexia.