Embryonic stem cells (ESCs) are considered the pinnacle stem cell due to their unlimited capacity to self-renew. Since ESCs can differentiate to produce precursors to almost all types of cells (pluripotency), they may hold the key to curing diseases that are caused by the loss of function among specific cell types such as Parkinson’s disease, Alzheimer’s disease, spinal cord injuries, and type 1 diabetes. In order to understand differentiation and self-renewal, researchers compare gene activity between ESCs that have undergone differentiation and those that have not. Scientists can also intentionally turn off (silence) specific genes to see if there is an effect on cell pluripotency. Conventional techniques are time consuming and only allow for the analysis of large numbers of cells at any given time. The cells in these populations are rarely homogeneous as the environments around them are not precisely controlled. To address these issues, researchers have developed a cutting edge technology called microfluidics. Microfluidic technology involves constructing small chips with thousands of fluid-filled chambers that can each contain a single cell. This reduces the number of cells used and the cost of each experiment, and allows thousands of experiments to be performed on a single chip simultaneously. Darek Sikorski is constructing a microfluidic device for the purpose of sustaining and examining the behaviour of ESCs. Once validated, this will allow for large-scale experiments to be performed where specific genes are silenced in each cell, allowing for the analysis of thousands of genes at once. This technology has the potential to greatly accelerate research into how ESCs grow, communicate and differentiate. Ultimately, this could lead to ways to use ESC lines to produce specialized tissues that can cure certain diseases.