Protein isoforms generated by alternative splicing: prevalence and relevance to models of cancer progression

Continuing the study that he began in his MSFHR-funded Master’s work, Malachi Griffith is examining the changes in the forms of certain genes due to alternative splicing that may be important in the progression of cancer. Alternative splicing is a phenomenon in which one gene is assembled from its component pieces in many different ways, a process which produces immense diversity and enables genes to fulfill many functions. This diversity in gene structure may also account for the differences in the severity of cancers and response to treatment observed among individuals. Malachi is studying colon and prostate cancer cells – some that are responsive to treatment, and others that are resistant. By studying differences in the structure of expressed genes between these contrasting states, he hopes to gain insight into why treatment initially appears to work well in some patients, yet becomes less effective over time. Such knowledge may lead to improved or novel treatment strategies, resulting in better outcomes for cancer patients.