Regulatory DNA sequences determine the leveI, location and timing of gene expression. These sequences are important in nearly all biological processes and many disease conditions. In some cases, the onset of cancer is related to changes in these sequences, such as when gene translocation results in the production of a protein that prevents normal cell death. Expanding on his previous MSFHR-funded work, Obi Griffith will make use of public gene expression data and novel computational approaches to identify genes believed to have undergone a change in regulation leading to cancer. Once these genes have been identified, further analysis will investigate the mechanism responsible for the change in regulatory control. Then, Obi will obtain specific tumour samples and validate the predicted changes in the laboratory. Obi hopes to increase understanding of how genes are controlled under normal conditions and how the loss of this control leads to cancer. Such identified genes could make suitable targets for therapeutic intervention as well as having prognostic and diagnostic value.