Finding a cure for tendinopathy: a translational biology approach

Repetitive-use tendinopathy, formerly known as tendonitis, is a major cause of repetitive strain injury (RSI). The occupational costs of RSI are enormous: work-related injuries cost Canada $8.6 billion annually and an estimated one-third of workers' compensation costs in industry are due to RSI of soft tissues, particularly tendons. In 2001, 2.3 million Canadians reported an RSI, and the average time lost from work per case of tendon-related injuries was 79 days (Source: StatsCanada 2001). Despite the enormous clinical, societal, and economic significance of RSIs, there is only limited understanding of the mechanisms that cause them.

In order to establish new treatments for RSI, Dr. Alexander Scott has established an innovative tendinopathy research program. He is incorporating a multi-disciplinary approach from basic to clinical science, which integrates a number of different methods, including molecular and cell biology, biomechanics, and rehabilitation science. His work will focus on the role of new blood vessel formation as a feature of chronic tendon injury. This work promises basic insight into the biology of RSI as well as directly applicable knowledge to develop new therapeutic strategies. This will be the first research program in Canada to have a primary focus on the biology of work-related tendon overuse injuries using a multidisciplinary approach. The ultimate vision of this program is to find better treatments for work-related tendon injuries.