DNA and RNA (the genetic matter in the cells of all living organisms) have properties beyond their function as storehouses of genetic information. I am examining ways we can exploit these other properties to develop new biomedical applications to combat disease. For example, DNA has a slight tendency to conduct electricity. I am investigating how to harness this conductivity to generate sensors that can detect and monitor hormones, metabolites (substances essential to metabolism), toxins, enzymes, drugs, proteins and other molecules in the blood or other body fluids. DNA has potential as an electrical tool to manipulate products at the molecular level. A major interest of mine is based on the discovery that synthetic enzymes made out of DNA and RNA can sometimes function as efficiently as naturally occurring enzymes. Enzymes act as catalysts to accelerate chemical reactions and cellular processes in the body, such as breaking down food during the digestive process. With huge, synthetic DNA and RNA libraries available, we have endless opportunities to create enzymes that perform specific therapeutic functions. Ultimately, we hope to synthesize nucleic acid enzymes to help counteract cancers and viral infections.