Engineering of islets to produce the anti-diabetic hormone GLP-1

More than 2 million Canadians and 135 million people worldwide have diabetes, a chronic medical condition characterized by a lack of insulin (Type 1), or insensitivity to insulin (Type 2), a blood sugar-lowering hormone. Type 1 diabetes can be treated by transplantation of islets, which contain the insulin-producing cells, to patients, but use of this therapy is limited by the huge volume of islets required to treat all Type 1 diabetes patients. As a result, most continue to rely on insulin injections to help control blood glucose levels. Glucagon-like peptide-1 (GLP-1) is produced in the intestine and has numerous anti-diabetic effects. Clinical trials are currently investigating GLP-1 as a treatment for Type 2 diabetes. Other recent studies show GLP-1 also enhances the growth of islet tissue. As a 2003 MSFHR Trainee, Rhonda Wideman investigated the effects of GLP-1 on the growth and survival of transplanted islets to determine if GLP-1 reduces the amount of islets needed to treat Type 1 diabetes in transplant recipients. Now in a PhD program, Rhonda is examining the therapeutic potential of engineering islets to produce GLP-1. She is investigating whether islets in which GLP-1 production has been induced will indeed survive and function better following transplantation. This would reduce the amount of islets necessary for a successful transplant and enhance post-transplant islet function. Ultimately, Rhonda hopes her studies will contribute to improved islet transplantation protocols, which are more effective and less reliant on limited supplies of donor islet tissue.