Approximately eight per cent of babies in British Columbia are born prematurely (less than 37 weeks after conception), and survival rates have improved dramatically for these infants. Motor and cognitive impairments are common among children born prematurely: five to 10 per cent will exhibit motor deficits such as cerebral palsy, and up to half will experience problems with brain functions (such as learning to speak). At school age, these delays in development can become greater concerns as they may interfere with learning and social interaction. Recent studies suggest that the developmental impairment observed may be associated with abnormal development of the brain regions responsible for motor and brain functioning. Early brain abnormalities, such as white matter injury (WMI), may underlie maturational impairments of these regions. A key brain pathway of interest is the corticospinal tract, which carries voluntary motor information from the control centre of the brain (the cortex) to muscles of the body. Elysia Adams is determining whether brain abnormalities, such as WMI, in premature newborns in their early life will affect their motor and brain function. Using advanced imaging techniques with magnetic resonance imaging (MRI), she is comparing corticospinal tract development among premature babies with and without these brain abnormalities,. This will allow her to determine whether WMI affects the development of the corticospinal tract and to establish whether later motor function can be predicted by assessing the tract’s development. Ultimately, this research could lead to ways to predict brain outcome among babies born prematurely. This would allow doctors to identify motor problems earlier and provide appropriate treatments, such as physiotherapy, to improve outcomes or prevent the long-term consequences of these developmental delays.