Computational simulation of transcription factor binding for the prediction of regulatory regions in DNA sequences

The regulation of when and where a gene is turned on (gene expression) is a complex process, fundamental to how a cell behaves and interacts with the environment around it. Abnormal changes in gene regulation are associated with many diseases, including cancer, asthma, and obesity. One class of proteins involved in the regulation of genes are transcription factors (TFs). TFs recognize and bind to short sequences of DNA near the genes they regulate and act to increase or decrease the expression of their target gene. The binding interaction between TF proteins and DNA is affected by an array of biophysical factors in the cell nucleus, making this complicated process a good candidate for computational modelling through bioinformatics. Bioinformatics is a relatively new field in which computational approaches are used to study biological problems; a field that unites computer science, statistics and the life sciences. Rebecca Hunt Newbury is developing a software simulator to model the TF binding process in a dynamic, interactive setting, with the intent of predicting the locations in a DNA sequence at which TFs will bind and regulate genes. From there, she will begin to incorporate the spatial relationships and combinatorial interactions between TFs that result in the different expression responses of genes. Hunt Newbury’s research will contribute to clearly defining the regions of DNA that participate in regulating a gene. Her work may ultimately contribute to new approaches for combating diseases caused by abnormal gene regulation.