There are 40,000 patients who suffer a cardiac arrest in Canada each year. When the heart stops beating from a cardiac arrest, blood flow to the brain stops which can lead to large strokes, called ischemic brain injury. Only a small percentage of people who develop ischemic brain injury survive with normal brain function.
The overall goal of this research is to improve the neurologic outcomes of critically ill patients who have suffered a severe brain injury after cardiac arrest by determining how to personalize blood pressure targets for individual patients to ensure adequate cerebral blood flow (CBF). CBF in the first few millimetres of brain tissue can be measured non-invasively by near-infrared spectroscopy (NIRS), using sensors applied to the forehead. I have previously demonstrated that we can use the NIRS to determine the patient-specific blood pressure, but it is unclear if maintaining this individualized blood pressure leads to better outcomes.
To address this gap, my Heart & Stroke Foundation funded study will enroll 60 patients in 3 intensive care units across Canada following cardiac arrest. The objective is to determine the association between the amount of time spent at the patients individualized blood pressure threshold, and neurologic outcomes at 6-months. The results of this study will be used to design a large interventional study of individualized blood pressure management and neurologic outcomes.