The human genome contains all the genes, and their regulatory instructions, required to develop the human body and determine how it deals with the outside environment. Now that the genomes of many species have been sequenced, a major focus of genomics is to identify all gene regulatory elements within DNA sequences. How these building blocks of life work together to build a complex human body – with its different organs, tissues, and cell types – is not well understood. Although most human cells carry the entire genome, each cell is functionally different, suggesting that not all genes are equally expressed.
Gene expression – the full use of information in a gene – is regulated in several ways, including by transcription. Specific regulatory proteins called transcription factors bind to targeted DNA sequences in the genome. This kind of activity can control cells by switching gene expression on and off. To better understand transcription regulation in genes, and thereby better understand gene expression, binding sites for transcription factors have to be identified. It is a fundamental step in the analysis of gene expression, which is tightly regulated so that genes are only expressed in specific cells, at specific developmental stages, and at appropriate levels to ensure correct physiological function.
Dr. Jack Chen’s work investigates the properties of transcription factor binding sites (TFBSs) and determines how these properties can assist with effective genome-wide TFBS identification. Using the nematode C. elegans as the model organism, he will combine experimental and computational approaches to characterize the properties of TFBSs that distinguish functional DNA sequences from nonfunctional ones. This study may pave road for a deep understanding of transcription in C. elegans, which will in turn shed light on both healthy and dysfunctional transcription in humans.