Stroke is the fourth leading cause of death and the main source of adult disability in Canada, costing our health system $2.7 billion annually. It is caused by the interruption of flow of blood or the rupture of blood vessels in the brain, which leads to brain cell death. Depending on the area of the brain that is affected, people experience loss of different abilities including speech, movement and memory. The effects of a stroke depend on where the brain has been injured, as well as how much damage has occurred. Recovery after stroke may be related to changes in the structure and activity of brain cells. Previous studies suggested that new regions of the brain can adopt the function of damaged regions after stroke – effectively rewiring the brain for function. However, the way that brain cells change their activity after stroke, and how these changes affect recovery, is still poorly understood. Dr. Majid Mohaherani is studying the basic mechanisms that lead to the recovery of the affected area in the brain. He is examining how brain cells that survive after stroke change their activity during the weeks and months after the initial injury, rebuilding the lost connections. This research aims to provide a better understanding of the link between previously reported structural changes that occur in the brain after stroke, and changes in the activity of individual cells and large neuronal networks. This work could lead to the development of new therapeutic tools that help the brain rewire itself, which could contribute to a reduction in disabilities in stroke patients.