Cystic fibrosis is the most common fatal genetic disease, affecting one out of every 3,600 children born in Canada. In 2013 alone, Canadians with cystic fibrosis spent about 25,000 days in hospital, mainly due to pulmonary exacerbations, which cause respiratory distress due to excessive mucus production, infection, and inflammation in the lungs. They are generally managed with two- to three-week courses of intravenous antibiotics and intensive chest physiotherapy. This is gruelling for patients and is costly for the health care system, at nearly $20,000 per episode.
A variety of therapies can prevent or treat pulmonary exacerbations, but to be effective, they need to be given at the right time. This research program aims to develop knowledge and tools that can improve the timing of prescribing and adjusting these therapies to make them more effective.
This program will examine hundreds of blood proteins concurrently, using well-characterized blood samples from cystic fibrosis patients. The proteins will be evaluated for their utility as biomarkers that can be used to predict pulmonary exacerbations and failure of a given course of treatment. Finding biomarkers like this will allow the development of simple blood tests to predict such events. Doctors could use these tests to personalize their courses of treatment to individual patients, thus reducing medical costs and improving patient outcomes.
The ultimate goal of this program is to enable more cost-effective, adaptive, personalized medical care for cystic fibrosis patients through mobilizing biomarker discovery research.
Tuberculosis (TB) and non-tuberculous mycobacterial infections (NTMs) are bacterial infections that create serious problems in BC. Treating TB costs the health system nearly $13 million per year, and NTMs are emerging as a new and poorly-understood threat, especially in BC’s seniors.
A dental implant is a screw-like device that is surgically placed in the jawbone to provide a foundation for artificial teeth. This involves precise removal of bone using drills, which is often risky because of proximity to delicate structures such as the maxillary sinus, orofacial nerves, and blood vessels. Mistakes in the drilling path may result in permanent nerve damage, life threatening hemorrhage, or injuries to adjacent teeth. This research project aims to reduce errors in the process by developing an objective and sensor-based method to assist practitioners in conducting the drilling process.
Close to 5,000 Canadians are diagnosed with pancreatic cancer every year and it is the fourth most common cause of cancer-related deaths in Canada. Unfortunately, a majority of these patients die within a year of their diagnosis, due in part to late diagnosis and tumour resistance to chemotherapy. In addition, most patients who are successfully treated eventually recur and succumb to the disease.
The severity of motor impairments due to stroke vary markedly in different people, and with therapy, a degree of recovery is possible. Understanding the underlying neural mechanisms supporting motor recovery from stroke would inform development of more effective therapies.
In Canada, there are over 50,000 new strokes reported every year. The prevalence and severity of subsequent upper limb disability is increasing and the prospect of complete recovery is poor. Stroke survivors who lack early indicators of a good prognosis, such as movement at the shoulder or wrist, are considered unlikely to regain much arm function through rehabilitation. However, a growing body of evidence suggests that untapped recovery potential may be better assessed from brain scans.
Malnutrition in early life underlies almost half of all child deaths globally and has long-term negative effects on education and productivity. HIV infection further compounds these effects in sub-Saharan Africa. The World Health Organization (WHO) recommends daily use of the antibiotic co-trimoxazole (CTX) to prevent infections in HIV-infected children. In addition to reducing deaths from infections, CTX also improves growth, possibly by changing the population of "good" microbes in the intestines.
Many people who have an incomplete spinal cord injury (iSCI) have the potential to improve their ability to walk. Current training strategies are limited in their ability to target skilled walking tasks (e.g. stairs and obstacles).