For many patients with a serious blood disorder or malignancy the primary treatment option is a stem cell transplant (SCT), which involves destroying the unhealthy blood cells of the patient and replacing them with healthy donor stem cells. Unfortunately, a large number of patients are unable to find a suitable donor, and die as a result. Thus, there is an urgent need to identify new sources of healthy blood stem cells for these patients.
One promising solution is to harvest other types of cells from the patient and reprogram them to become blood stem cells, which can then be reintroduced later. Key to the success of this approach is placing the cells in an environment which mimics how the first blood cells are generated during embryonic development (called endothelial to hematopoietic transition [EHT]). To date little research has focused on the external cues needed for EHT, and this presents a bottleneck to producing stem cells for SCT. Therefore, our project will use models of EHT to identify external drivers of EHT, and the mechanisms by which they program cells to transition into blood cells. The knowledge from this project will help to create protocols to reproducibly reprogram patient-derived cells into blood cells for SCT.