The potential for a pandemic outbreak of highly pathogenic avian influenza A strains, such as H5N1 or H7N3, is a serious and growing public health threat. Currently, a major limitation in pandemic preparedness is the difficulty associated with the timely development and distribution of a vaccine, as it is impossible to precisely predict the nature of a coming virus until a pandemic has already begun. Moreover, current antiviral treatments that target influenza virus components can be toxic, and can be overcome if the virus develops drug resistance. An alternative approach to antiviral drug design is to target host cell components that are required for viral infection, which eliminates the chance of antiviral resistance. A key step during influenza infection is entry of the virus into the host cell via fusion of viral and host cell surfaces. This process relies on the cutting and structural change of a virus surface protein, which in avian influenza strains is accomplished by an enzyme from the host cell. Recently, a novel, naturally-occurring inhibitor of this host enzyme was discovered in fruit flies. Heather Braybrook is investigating whether this inhibitor can prevent H5N1 virus entry and subsequent widespread infection. She will evaluate its effectiveness and toxicity in a cell culture model of influenza infection and study the mechanism of inhibition in further detail. Her studies will shed light on whether this type of inhibition could be used to reduce avian influenza infection in humans. Braybrook’s research may contribute to the development of novel and diverse antiviral therapeutics in the face of a potential influenza pandemic.