Sepsis is the overwhelming immune system response that occurs when someone develops a serious infection, and is responsible for one-fifth of all deaths worldwide. Sepsis occurs when the immune system becomes over-activated by lipid components present in bacteria, and ultimately leads to dysfunction of critical organs and death. These bacterial lipids (called pathogen-associated lipids or ‘PALs’) are transported through the bloodstream by lipoproteins, the same “vehicles” that are used for cholesterol transport. Among these vehicles, high density lipoprotein (HDL) plays a central role transporting PALs. However, HDL levels significantly decrease during sepsis, leading to reduced clearance of PALs. In our previous work, we discovered that inhibiting a specific gene called cholesteryl ester transfer protein or CETP preserved HDL levels during sepsis, suggesting that this may be a new approach to treat sepsis. We now aim to study the mechanism by which CETP regulates HDL to combat bacteria, and whether CETP inhibition will improve mouse survival in a clinically-relevant sepsis model. Completion of this project will provide new insights into the therapeutic role of CETP inhibitor in sepsis, ultimately improving the health of Canadians.