Advanced head and neck cancers involving facial bone often require aggressive removal of diseased bone. Reconstruction of the bone is typically done by cutting and reshaping patient donor bone. This process involves is complex, since the accuracy of the reconstruction significantly impacts cosmetic and functional outcomes. Doing this during surgery is challenging, time-consuming and can be improved with better planning before surgery.
One method of pre-operative planning is to use patient imaging data to perform virtual reconstructions and design 3-D printed cutting guides for use during surgery. Currently, the only way to obtain such guides is through a third party and costs between $2000 – $6000 per case. However, this process has a significant turnaround time and surgeons have limited input on how the actual guides are designed.
My group has developed a software that makes the pre-operative process fast, simple and effective. We currently have the capacity to plan mandible (lower jaw) reconstructions with the fibula (lower leg) and are now validating the process through a clinical trial. We hope to extend the software capability to other surgeries and conduct research to generate supporting evidence.